Extensions 1→N→G→Q→1 with N=C22 and Q=C8xD5

Direct product G=NxQ with N=C22 and Q=C8xD5
dρLabelID
D5xC22xC8160D5xC2^2xC8320,1408

Semidirect products G=N:Q with N=C22 and Q=C8xD5
extensionφ:Q→Aut NdρLabelID
C22:1(C8xD5) = C5:5(C8xD4)φ: C8xD5/C5:2C8C2 ⊆ Aut C22160C2^2:1(C8xD5)320,352
C22:2(C8xD5) = C8xC5:D4φ: C8xD5/C40C2 ⊆ Aut C22160C2^2:2(C8xD5)320,736
C22:3(C8xD5) = D5xC22:C8φ: C8xD5/C4xD5C2 ⊆ Aut C2280C2^2:3(C8xD5)320,351

Non-split extensions G=N.Q with N=C22 and Q=C8xD5
extensionφ:Q→Aut NdρLabelID
C22.1(C8xD5) = D20.5C8φ: C8xD5/C5:2C8C2 ⊆ Aut C221604C2^2.1(C8xD5)320,534
C22.2(C8xD5) = D20.6C8φ: C8xD5/C40C2 ⊆ Aut C221602C2^2.2(C8xD5)320,528
C22.3(C8xD5) = C5:3(C23:C8)φ: C8xD5/C4xD5C2 ⊆ Aut C2280C2^2.3(C8xD5)320,26
C22.4(C8xD5) = (C2xDic5):C8φ: C8xD5/C4xD5C2 ⊆ Aut C22160C2^2.4(C8xD5)320,27
C22.5(C8xD5) = C8.25D20φ: C8xD5/C4xD5C2 ⊆ Aut C22804C2^2.5(C8xD5)320,72
C22.6(C8xD5) = Dic5.14M4(2)φ: C8xD5/C4xD5C2 ⊆ Aut C22160C2^2.6(C8xD5)320,345
C22.7(C8xD5) = D5xM5(2)φ: C8xD5/C4xD5C2 ⊆ Aut C22804C2^2.7(C8xD5)320,533
C22.8(C8xD5) = C16xDic5central extension (φ=1)320C2^2.8(C8xD5)320,58
C22.9(C8xD5) = C40.88D4central extension (φ=1)320C2^2.9(C8xD5)320,59
C22.10(C8xD5) = C80:17C4central extension (φ=1)320C2^2.10(C8xD5)320,60
C22.11(C8xD5) = D10:1C16central extension (φ=1)160C2^2.11(C8xD5)320,65
C22.12(C8xD5) = (C2xC40):15C4central extension (φ=1)320C2^2.12(C8xD5)320,108
C22.13(C8xD5) = D5xC2xC16central extension (φ=1)160C2^2.13(C8xD5)320,526
C22.14(C8xD5) = C2xC80:C2central extension (φ=1)160C2^2.14(C8xD5)320,527
C22.15(C8xD5) = C2xC8xDic5central extension (φ=1)320C2^2.15(C8xD5)320,725
C22.16(C8xD5) = C2xC20.8Q8central extension (φ=1)320C2^2.16(C8xD5)320,726
C22.17(C8xD5) = C2xD10:1C8central extension (φ=1)160C2^2.17(C8xD5)320,735

׿
x
:
Z
F
o
wr
Q
<